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Abstract

BERT has been shown to obtain state-of-the-
art results on eleven natural language tasks, in-
cluding a 5.6% absolute improvement in accu-
racy on the MultiNLI task to 86.7% (Devlin
et al., 2018; Williams et al., 2017). However,
the question of what information learned in
BERT pre-training is responsible for this in-
creased performance remains an open ques-
tion. In this work, we propose a method of
finding specific neurons in BERT that encode
information about linguistic features such as
negation explicitly used by the model for
NLI classification. Drawing from methods in
causal inference, we evaluate both the direct
and indirect effects of the linguistic feature
negation on NLI predictions. Our results sug-
gest that there are no specific neurons that en-
code and exploit information about negation in
the top three layers of the model.

1 Introduction

Work on creating models capable of general
natural language understanding has focused on
learning sentence embeddings through some pre-
training task and evaluating these embeddings by
feeding them as inputs to downstream natural lan-
guage processing tasks (Conneau et al., 2017;
Bowman et al., 2019). GLUE, a suite of eleven
NLP tasks testing understanding of different lin-
guistic phenomena, has become a standard set of
such downstream tasks used to evaluate sentence
embeddings (Devlin et al., 2018).

Recently, the sentence representation model
BERT, Bidirectional Encoder Representations
from Transformers, achieved state-of-the-art re-
sults on GLUE, with a 7.6% absolute improve-
ment in overall GLUE score (Devlin et al., 2018).
These results also included a 5.6% absolute im-
provement in accuracy on MNLI, a multi-genre
dataset for the natural language inference (NLI)

task. In NLI, an example consists of a premise
sentence and a hypothesis sentence, with the task
of determining whether the relationship between
the sentences is one of entailment, contradiction,
or neutrality. MNLI consists of 433,000 of these
examples, with crowdsourced labellings.

BERT’s state-of-the-art performance on GLUE,
along with other recent results, (White et al., 2017;
Devlin et al., 2018; Bowman et al., 2019; Rad-
ford et al., 2019) suggest that models pre-trained
to model language in a general sense via next-
word prediction are effective at learning general
language properties because they are able to trans-
fer what they learn to a plethora of heterogeneous
tasks with little retraining. What is unknown, how-
ever, is the method by which these generalizable
models are able to adapt to these different tasks.
The optimistic theory claims that because mod-
els like BERT learn underlying properties of lan-
guage that are task agnostic, generalization is pos-
sible in the same way humans complete these dif-
fering tasks. However, benchmarks like GLUE
fail to elucidate exactly what is learned during
BERT pretraining. Thus, researchers have devel-
oped more fine-grained techniques for exploring
what properties of language models like BERT ex-
ploit in order to do well on such tasks.

2 Related Work

More fine-grained probing analysis of what is
learned by sentence embedding methods for NLI
has typically made use of challenge NLI datasets
and auxiliary classifiers (Belinkov and Glass,
2018). Challenge datasets are sets of NLI pairs
where the hypothesis and premise differ mini-
mally, designed to test for a specific linguistic
phenomenon (Poliak et al., 2018; Dasgupta et al.,
2018; Kim et al., 2019). For example, researchers
have used examples like the following to test



for a subsequence heuristic (predicting entailment
when the hypothesis appears as a subsequence in
the premise):

p : Alice believes Mary is lying.

h : Alice believes Mary.

In such an example, a model relying on the subse-
quence heuristic would incorrectly predict entail-
ment (McCoy and Linzen, 2018).

Auxiliary classifiers have also been trained to
predict a linguistic property of interest given some
pre-trained embedding as input (Adi et al., 2016;
Conneau et al., 2018; Giulianelli et al., 2018). A
successful classifer in this task demonstrates that
the embeddings indeed encode that property.

However, while both of these approaches can
be used to probe what linguistic properties are
encoded in sentence embeddings, a downside of
these methods is that they cannot show whether
those properties are actually exploited by the clas-
sifiers in making predictions for downstream tasks
such as NLI. For instance, Vanmassenhove (2017)
trained a diagnostic classifier on neural machine
translation sentence embeddings and found that
though tense could be accurately predicted around
90% of the time, output translations only had cor-
rect tense 79% of the time, suggesting that en-
coded information is not always used downstream.
Thus, these methods are not able to answer the
question: What information in these sentence em-
beddings that is learned during pre-training is re-
sponsible for improved performance on down-
stream tasks? Simply determining whether lin-
guistic information is encoded in representations
cannot answer this question because such encoded
information may not ultimately used in down-
stream tasks.

In this paper, we provide one approach to an-
swering this causal question by combining mea-
sures of whether information encoded with mea-
sures of their causal effects. We add to the line of
work probing sentence embedding methods with
a method analyzing the contribution of individual
dimensions of BERT embeddings to NLI. Our ap-
proach is adapted from that proposed by Bau et al.
(2019) for neural machine translation models and
identifies causal effects of linguistic features on
predictions for NLI. In particular, we measure the
direct and indirect causal effects of negation me-
diated through individual neurons. Though we ap-
ply the method to layers of BERT, the method is

model-agnostic and can be applied to dimensions
in any model before a classification layer.

3 Problem Set-Up

3.1 Linguistic Phenomenon: Negation

The linguistic phenomenon we probe in this paper
is negation. More specifically, we investigate the
effect of negation in the premise of an NLI pair.
For each original NLI pair (p, h), we create an-
other pair (p′, h), where p′ is the negated version
of p. All MNLI pairs in our constructed test set
are originally taken from the MNLI dev matched
dataset (Williams et al., 2017). In Section 4.1, we
describe how we create each negated p′.

We probe how BERT encodes and exploits the
property of negation in particular because it has
been shown that the ability to use negation is criti-
cal for doing well on MNLI, with models learning
strong biases to predict contradiction when there
is a negation present in the NLI pair (Dasgupta
et al., 2018).

3.2 Causal Effects

We investigate both the direct and indirect causal
effects (Pearl, 2013) of linguistic properties on
output NLI predictions as mediated by individual
neurons in BERT. We probe for causal effects by
manipulating the values of embeddings’ dimen-
sions before they are given as input into a lin-
ear NLI classification layer. Our formal approach
is described below and expanded upon in Section
4.3.

Let (p, h) and (p′, h) denote two NLI
premise/hypothesis pairs, where p and p′ dif-
fer only with respect to the linguistic property
being probed. In this paper, this linguistic prop-
erty is negation in the premise. p′ then represents
the negated version of p. Call x and x′ the
NLI pairs (p, h) and (p′, h) respectively. Mi(x)
represents the activation of the ith dimension of
a learned BERT sentence embedding when x is
given as input into BERT. Similarly, Mi(x

′) rep-
resents the activation of the ith dimension when
x′ is given as input into BERT. Let Y (x∗,m))
represent the probability of entailment predicted
by the NLI classifier when NLI pair version x∗
is given as input and m value, of the form Mi(x)
or Mi(x

′), is used. We use this probability as
our predicted variable rather than the discrete
predicted label value so that the analysis can be
done in continuous space.



3.3 Direct Effects
We measure the direct effect of negation on the
probability of entailment predicted for a given NLI
pair (p, h) as follows:

DE(p′, p) = E[Y (p′,Mi(p))]− E[Y (p,M(p))]

3.4 Indirect Effects
We measure the indirect effect of negation on the
probability of entailment predicted for a given NLI
pair (p, h) as follows:

IE(p′, p) = E[Y (p,Mi(p
′))]− E[Y (p,M(p))]

3.5 Correlational Measurements
In addition to measuring direct and indirect ef-
fects, we wanted to measure whether a neuron en-
coded for negation uniquely. That is, we wanted
to see whether the magnitude of activation for a
candidate neuron for an NLI input was correlated
uniquely with the presence of negation in the input
and not with its prediction for the input. To show
this, we examined the distribution of activations of
each neuron modified across 4 groups:

1. Training samples that are negated and output
not entailed (- not entailed)

2. Training samples that are positive and output
not entailed (+ not entailed)

3. Training samples that are negated and output
entailment (- entailed)

4. Training samples that are positive and output
entailment (+ entailed)

Finding a differential activation for a neuron
across the two negation groups with minimal dif-
ference in activation across the two entailment or
not entailment groups would show a neuron to cor-
relate with negation but not with other undesired
factors. This method would allow us to say that
a particular neuron encodes the presence of nega-
tion, as opposed to a bias towards a not entailment
prediction, which might otherwise be conflated
because negation is in general correlated with a
prediction of not entailed.

3.6 Hypothesis
The specific question we wanted to investigate was
the following: To what extent is the effect of nega-
tion mediated by an individual neuron?

To answer this question, we looked at a combi-
nation of the correlational measure of the extent to
which the neuron encoded negation, as well as the
causal effects of the neuron on the model’s predic-
tion.

More specifically, we first used the correla-
tional measurements to assess whether the activa-
tion value of a particular neuron encoded informa-
tion about whether there was negation present in
the premise. We then looked to see whether that
particular neuron had a strong causal (direct or in-
direct) effect on the output of the model. This
combination of results would allow for the conclu-
sion that the particular neuron was a “not-neuron”,
encoding information about negation used by the
model in its calculations. Without the corre-
lational measure verifying that the neuron was
uniquely encoding negation, any neuron with a
strong causal effect would be a “contradiction-
neuron.” And any neuron encoding negation but
not causally affecting the model would just be a
negation-encoding neuron.

4 Probing Methodology

4.1 Data

We create p′ by negating the main verb of p.
We identify the main verb of p using the origi-
nal parse trees that come with the MNLI exam-
ples. More specifically, we take the MNLI dev
matched dataset and use a heuristic to exclude al-
ready negated examples (by filtering out exam-
ples with the words never, not, and n’t). With
the remaining examples in this filtered dev set, we
negate the first verb of the sentence using the verb
conjugator from pattern.en1. For instance,
the following pair of NLI inputs represents an ex-
ample of (p, h) and (p′, h):

p : Dozens of additional militants ar-
rived on later flights.

p′ : Dozens of additional militants did
not arrive on later flights.

h : The blockade stopped militants from
arriving by aircraft.

Our resulting dataset consisted of 6, 341 unique
NLI pairs, each with one positive version and one
negated version.

1https://www.clips.uantwerpen.be/
pages/pattern-en

https://www.clips.uantwerpen.be/pages/pattern-en
https://www.clips.uantwerpen.be/pages/pattern-en


4.2 BERT Architecture
BERT consists of an embedding layer, followed by
12 transformer blocks as in (Vaswani et al., 2017),
then a fully connected dense layer with tanh acti-
vation, and finally a simple linear layer for classi-
fication.

4.3 Probing Neurons for Effects
In order to measure the direct and indirect effects
of individual neurons in BERT, we modify the
value of a single neuron and observe the change
in output probabilities between the two possible
classes, entailment and not entailment.

To measure the effects of neurons in a particular
layer, we implement a modified forward method
for BERT, which records the activations of the
specified layer of neurons for a single MNLI ex-
ample. Secondly, we implement a second forward
method that passes a modified layer through the
remaining layers of the model. Thus, to change
the value of an individual neuron at some layer
of BERT, we simply run the example we wish
to use through the model, take the neuron activa-
tions at the desired layer, then modify the activa-
tion value of a single neuron, and use our second
forward method to then push these neuron activa-
tions through the rest of the model.

4.3.1 Direct Effects
In order to measure the direct effects of a single
neuron at a specific layer as defined in Section
3.3, we feed an MNLI pair and the corresponding
negated pair created from Section 4.1 through the
model. We then take the neuron activations at the
desired layer from the the negated example, and
change the value of the target at that layer to be
the activation value of the same neuron at the same
layer of the positive MNLI example. We push this
modified neuron activation set through the rest of
the model, and record the difference between this
output entailment probability and that of the orig-
inal positive example.

4.3.2 Indirect Effects
Measuring the indirect effects as defined in Sec-
tion 3.4 is similar to measuring the direct effects.
Instead of swapping a single neuron activation
from the positive MNLI example into the negated
one at a specific neuron and layer, we swap a sin-
gle neuron activation from the negated MNLI ex-
ample into the positive example, push the modified
activation set through the rest of the model, and

measure the difference between the output entail-
ment probability of the original positive example,
and this modified example.

5 Experiments

5.1 Models

We probe a fine-tuned BERT model, where the
weights of both the classification layer weights
and pre-trained layers are fine-tuned on MNLI.
The model is fine-tuned for 3 epochs and uses
the original hyperparameters described by Devlin
et al. (2018). Additionally, we train a copy of the
model on each of two versions of MNLI, which
correspond to two methods of removing examples
with the label neutral from the data.

Binary: The first method is to simply consider
as the dataset only those examples labeled as either
entailment or contradiction, shrinking our data set
by approximately one third. We will refer to these
contradiction examples as not entailment exam-
ples for consistency.

Full Binary: The second is to consider the neu-
tral and contradiction examples as a single class,
not entailment. This is consistent with previous
work from (Wang et al., 2018), which used this
method to collapse three class tasks into binary
tasks for the GLUE tasks.

We refer to these two modified data sets as “Bi-
nary” (neutrals removed), and “Full Binary” (neu-
trals and contradiction forming a single class). We
remove neutral examples to simplify our method
for measuring effects, which involves comparing
probabilities of the output classes.

5.2 Layers Probed

For each of the two models mentioned in section
5.1, we explore the neurons of three different lay-
ers of the BERT architecture.

Layer 1: The first layer we probe is the pooled
output layer of the whole model, which repre-
sents the hidden state of the CLS token and is fed
through the final linear classifier to generate the in-
ference prediction. This layer of neurons has size
equal to the hidden dimension of BERT, which is
768.

Layer 2: The second layer we probe is an ex-
tra pooled output layer that is transformed into our
first probed layer by a dense layer with tanh acti-
vation. The tanh function provides a non-linearity
that means this layer is not simply linearly con-
nected to the final output, unlike the first probed



layer. Like the first probed layer, it also has di-
mensionality 768.

Layer 3: The third layer we probe is the layer
before the final encoder block of Bert. Unlike the
previous layers probed, this is not a 1× 768-sized
layer as the first two layers we probed, but rather
a 70 × 768-sized layer, where 70 is the max se-
quence length. Each of the 768 dimensions is a
set of 70 intra attention values over the sequence
of words representing the premise hypothesis pair.
To inject change in this layer, we change a full set
of attention values at a time, with this layer again
having 768 overall dimensions to probe.

6 Results

We found that negation produces a significant to-
tal effect on the predictions of both the Binary and
Full Binary models. As shown in Table 1, how-
ever, this effect was largely only seen for positive
examples that were originally labeled as entail-
ment, confirming results that models learn a bias
to predict contradiction when there is a negation
present in the NLI pair (Williams et al., 2017).

Regarding our specific hypothesis about “not-
neurons,” however, the results of our model indi-
cate that, within the final three layers of BERT,
there are no individual neurons that encode and
exploit negation. In fact, we also did not find neu-
rons merely encoding negation or individual neu-
rons merely having a strong causal effect on the
model’s outputs. Across our experiments with lay-
ers and models, this result is consistent.

6.1 Correlation Results

To find candidate “not-neurons” encoding nega-
tion and mediating its causal effect on models’
outputs, we observe the correlation of neuron ac-
tivation across the four groups from section 3.5.
This was meant to identify neurons with large dif-
ferences in activation between negated and posi-
tive sentences but small differences in activation
between not entailment and entailment. For a
given layer and model from section 5 we parti-
tioned the sentence examples into the 4 groups
based on the output prediction of the model for the
positive and negated cases.

Within each of these groups, there is a disti-
bution of activations. To investigate whether the
activation for negated examples (- entailed and -
not entailed) were far from that of positive ex-
amples (+ entailed and + not entailed) we calcu-

Figure 1: This figure displays the results by model and
layer of each neuron’s direct and indirect effects on the
model’s output probabilities of entailment.

lated the Wasserstein distance between each pair
of groups. The Wasserstein distance between dis-
tributions measures the density of one distribution
that must be moved to turn it into the other. More
formally, this is equivalent to the integral of the
absolute difference of the CDFs of the two distri-
butions:

W (p, q) =

∫ ∞
−∞
|P (x)−Q(x)|dx

where P and Q are the CDFs of p and q respec-
tively. We calculate this distance between the pos-
itive and negated distributions and between the en-
tailment and not entailment distribution. We sum
the distances between the positive and negated
group distributions and subtract the distance be-
tween the not entailment and entailment group dis-
tributions. Looking at the dimensions that max-
imize this quantity will show neurons that have
large differential activation across negated and
positive examples but minimal differential activa-
tion across entailment and contradication. In order
to compare these distances across dimensions, be-
fore calculating Wasserstein distance we normal-
ize the activations for a particular neuron to the
range (-1, 1).

The results of this experiment are shown in 2 for
the binary model and 3 for the full binary model.



Dev Matched Acc Positive Preds Switch from Entailed Switch from Not Entailed

Full Binary: .877 .318 E / .682 C .655 .324

Binary: .926 .529 E / .471 C .578 .121

Table 1: This table gives general results for each of our two models, including accuracy on the original MNLI
dev matched dataset, as well as prediction breakdowns for our positive/negated constructed datasets. This table
highlights that negation caused the models to switch their predictions when their original positive predictions were
entailment, but not when the initial predictions were not entailment

.

(a) Distribution of 3 hidden neuron activations from the final layer of the binary model

(b) Distribution of 3 hidden neuron activations from the second to last (pooling) layer of the binary model

Figure 2: Distributions of neuron activation (normalized to the range -1.0, 1.0) are shown for various hidden dimensions in
the last and second to last layer of the binary model. Four separate groups are shown in each image, for each of the four groups
detailed in section 3.5

We show results for neurons in layer 1 and layer
2. For layer 3, which is the last self attention layer
of BERT, our changes were not to a single activa-
tion but rather a sequence of activations, and so the
separability of these could not be measured in this
way.

Across both graphs, a noticeable trend is that,
while the negated entailment and positive en-
tailment distributions are furthest apart, as ex-
pected, the positive distribution does not overlap
much with the other distributions in most of the
graphs. In most graphs, however, entailed contra-
diction, negated entailment, and negated contra-
diction heavily overlap. In many graphs, in fact,
positive contraditiction and negated entailment
have nearly identical distributions. This suggests
that there is some confounding between negation

and contradiction as the examples in these two
groups are those that show exactly one of these
characteristics. Examples with both of these char-
acteristics, examples with negated contradiction,
overlap with these two groups heavily but often
show more extreme values. This indicates that in
each of these neurons, which are the most promis-
ing for separability for negation, we find not sepa-
rability for negation, but separability for the crite-
ria of negation or contradiction. The conjunction
of these two variables is somewhat expected given
previous work that suggests negation is a heuristic
used to predict contradiction in MNLI models.

Between the graphs, we also see several differ-
ences. In the binary model, the overlap between
the distributions is greater, with the negated entail-
ment and positive contradiction distributions being



(a) Distribution of 3 hidden neuron activations from the final layer of the full binary model

(b) Distribution of 3 hidden neuron activations from the second to last (pooling) layer of the full binary model

Figure 3: Simalar to the previous figure, these distributions of neuron activation are shown for hidden dimensions in the last
and second to last layer of the full binary model. The different distributions in each plot are the same groups as above from
Section 3.5

nearly identical. In the Full Binary model, this dis-
tribution is more spread out. The increased spread
of the distributions shows the conjunction of nega-
tion and contradiction is not as strong in the full
binary model. This makes sense as the neutral ex-
amples that are included in the contradiction class
for this model which might lessen the dependence
on negation as a heuristic. Finally, between the
layers 1 and 2 in both graphs, the distribution show
stark differences. There is a much more clear di-
vide in layer 1 between entailment and contradic-
tion. This makes sense as we would expect that
in later layers, the representations of neurons bet-
ter represent the distinction between the two pre-
dicted classes. These similarities and differences
are consistent across not only the three examples
for each case that we show here, but the 20 dimen-
sions for each model that maximize our distance
metric based on Wasserstein difference, which are
those dimensions most promising for differential
activation in the presence of negation.

Across all layers and models, we found no neu-
ron that had differential activation for negation but
not for contradiction. This suggests that there is
no specific neuron that encodes only for negation
because of conflation with other factors.

6.2 Causal Effects

Given that there was no neuron in these last three
layers encoding negation (as shown through our
correlational measures), there also was no neuron
individually responsible for mediating the causal
effect of negation on output prediction, a result
which would require both that the neuron encode
negation and have a causal effect. However, we
investigated the indirect and direct effects of the
neurons in the three layers in order to see whether
there was a “contradiction” neuron in any of these
layers. That is, we wanted to see whether the effect
of negation had been localized by the last three
layers such that a single neuron had a large effect
on whether the output label was contradiction.

First, the direct and indirect effects of introduc-
ing negation were largely distributed across each
of the layers we examined. For each combination
of layer and model mentioned in Section 5, we cal-
culated the direct and indirect effects of the values
of each neuron in the layer and sorted the effects
by magnitude across the hidden dimensions. As
shown in Figure 1, across all experiments these
lines are flat, indicating that the direct and indirect
effects on output prediction probabilities when in-
jecting change between the positive and negated



premise are nearly identical for each of these neu-
rons and insignificant.

This result did not change when we altered ei-
ther the model or the layer we examined. For
each of these experiments, with a specific layer
and model, we observed an indirect effect that was
near zero and direct effect that was almost exactly
the value of the probabilities of entailment for the
negated examples. The invariability across neu-
rons suggests that any information in these layers
that may be encoded about whether label to be pre-
dicted is entailment or not entailment must be dis-
tributed. There is not a single neuron that signif-
icantly encodes this information or we would see
a much higher indirect effect for at least one of
these neurons. This does not rule out, however,
the possibility that this information is encoded by
a group of neurons, as a group might have an in-
direct effect higher than the sum of the component
neurons.

7 Conclusion

Our results suggest that information about both
negation and a bias towards a contradiction pre-
diction is distributed by the time it reaches the
last three layers of BERT. Additionally, informa-
tion about these two features is entangled at this
level of the model; the results from our corre-
lational experiments showed conflation between
these two factors that confirms the findings of pre-
vious works indicating negation as a heuristic for
predicting contradiction. Together, this result sug-
gests that if information about negation is encoded
and used in a localized manner, it is happening be-
fore the last three layers of the model.

7.1 Future Work

Our research opens up some possible avenues of
future research. The first is a deeper probing of our
models. Our experimental method requires chang-
ing 768 dimensions for each of 6341 example sen-
tences and running them through n layers of the
model, where n is how far from the last layer the
layer in question is. It is an open question at what
point in the model negation is encoded and when
it starts to be exploited by the model as a bias to-
wards a prediction of contradiction.

We also note that our methodology is agnostic
with respect to the linguistic feature being probed
for, and similar techniques could be applied to
other linguistic phenomena. The methodology is

also model-agnostic and can be applied to models
besides BERT.

7.2 Our code

Our code is publically available at https:
//github.com/alexisjihyeross/
cs287_causality_project.

References

Yossi Adi, Einat Kermany, Yonatan Belinkov, Ofer
Lavi, and Yoav Goldberg. 2016. Fine-grained anal-
ysis of sentence embeddings using auxiliary predic-
tion tasks. CoRR, abs/1608.04207.

Anthony Bau, Yonatan Belinkov, Hassan Sajjad, Nadir
Durrani, Fahim Dalvi, and James Glass. 2019. Iden-
tifying and controlling important neurons in neural
machine translation. In International Conference on
Learning Representations.

Yonatan Belinkov and James Glass. 2018. Analysis
methods in neural language processing: A survey.
CoRR, abs/1812.08951.

Samuel R. Bowman, Ellie Pavlick, Edouard Grave,
Benjamin Van Durme, Alex Wang, Jan Hula, Patrick
Xia, Raghavendra Pappagari, R. Thomas McCoy,
Roma Patel, Najoung Kim, Ian Tenney, Yinghui
Huang, Katherin Yu, Shuning Jin, and Berlin Chen.
2019. Looking for ELMo’s friends: Sentence-level
pretraining beyond language modeling.

Alexis Conneau, Douwe Kiela, Holger Schwenk,
Loı̈c Barrault, and Antoine Bordes. 2017. Su-
pervised learning of universal sentence representa-
tions from natural language inference data. CoRR,
abs/1705.02364.

Alexis Conneau, Germán Kruszewski, Guillaume
Lample, Loı̈c Barrault, and Marco Baroni. 2018.
What you can cram into a single vector: Prob-
ing sentence embeddings for linguistic properties.
CoRR, abs/1805.01070.

Ishita Dasgupta, Demi Guo, Andreas Stuhlmüller,
Samuel J. Gershman, and Noah D. Goodman. 2018.
Evaluating compositionality in sentence embed-
dings. CoRR, abs/1802.04302.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. BERT: pre-training of
deep bidirectional transformers for language under-
standing. CoRR, abs/1810.04805.

Mario Giulianelli, Jack Harding, Florian Mohnert,
Dieuwke Hupkes, and Willem H. Zuidema. 2018.
Under the hood: Using diagnostic classifiers to in-
vestigate and improve how language models track
agreement information. CoRR, abs/1808.08079.

https://github.com/alexisjihyeross/cs287_causality_project
https://github.com/alexisjihyeross/cs287_causality_project
https://github.com/alexisjihyeross/cs287_causality_project
http://arxiv.org/abs/1608.04207
http://arxiv.org/abs/1608.04207
http://arxiv.org/abs/1608.04207
https://openreview.net/forum?id=H1z-PsR5KX
https://openreview.net/forum?id=H1z-PsR5KX
https://openreview.net/forum?id=H1z-PsR5KX
http://arxiv.org/abs/1812.08951
http://arxiv.org/abs/1812.08951
https://openreview.net/forum?id=Bkl87h09FX
https://openreview.net/forum?id=Bkl87h09FX
http://arxiv.org/abs/1705.02364
http://arxiv.org/abs/1705.02364
http://arxiv.org/abs/1705.02364
http://arxiv.org/abs/1805.01070
http://arxiv.org/abs/1805.01070
http://arxiv.org/abs/1802.04302
http://arxiv.org/abs/1802.04302
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1808.08079
http://arxiv.org/abs/1808.08079
http://arxiv.org/abs/1808.08079


Najoung Kim, Roma Patel, Adam Poliak, Patrick Xia,
Alex Wang, R. Thomas McCoy, Ian Tenney, Alexis
Ross, Tal Linzen, Benjamin Van Durme, Samuel
Bowman, and Ellie Pavlick. 2019. Probing what dif-
ferent nlp tasks teach machines about function word
comprehension. In Joint Conference on Lexical and
Computational Semantics (StarSem).

R. Thomas McCoy and Tal Linzen. 2018. Non-entailed
subsequences as a challenge for natural language in-
ference. CoRR, abs/1811.12112.

Judea Pearl. 2013. Direct and indirect effects. CoRR,
abs/1301.2300.

Adam Poliak, Aparajita Haldar, Rachel Rudinger,
J. Edward Hu, Ellie Pavlick, Aaron Steven White,
and Benjamin Van Durme. 2018. Collecting di-
verse natural language inference problems for sen-
tence representation evaluation. In Proceedings of
the 2018 Conference on Empirical Methods in Nat-
ural Language Processing, pages 67–81, Brussels,
Belgium. Association for Computational Linguis-
tics.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Eva Vanmassenhove. 2017. Investigating aspect in nmt
and smt. Computational Linguistics in the Nether-
lands Journal, 27.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. CoRR, abs/1706.03762.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2018.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. CoRR,
abs/1804.07461.

Aaron Steven White, Pushpendre Rastogi, Kevin Duh,
and Benjamin Van Durme. 2017. Inference is ev-
erything: Recasting semantic resources into a uni-
fied evaluation framework. In Proceedings of the
Eighth International Joint Conference on Natural
Language Processing (Volume 1: Long Papers),
pages 996–1005, Taipei, Taiwan. Asian Federation
of Natural Language Processing.

Adina Williams, Nikita Nangia, and Samuel R. Bow-
man. 2017. A broad-coverage challenge corpus for
sentence understanding through inference. CoRR,
abs/1704.05426.

http://arxiv.org/abs/1811.12112
http://arxiv.org/abs/1811.12112
http://arxiv.org/abs/1811.12112
http://arxiv.org/abs/1301.2300
https://www.aclweb.org/anthology/D18-1007
https://www.aclweb.org/anthology/D18-1007
https://www.aclweb.org/anthology/D18-1007
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1804.07461
http://arxiv.org/abs/1804.07461
https://www.aclweb.org/anthology/I17-1100
https://www.aclweb.org/anthology/I17-1100
https://www.aclweb.org/anthology/I17-1100
http://arxiv.org/abs/1704.05426
http://arxiv.org/abs/1704.05426

